
1 

ALLAMA IQBAL OPEN UNIVERSITY, ISLAMABAD 
(Department of Computer Science) 

 

WARNING 
1. PLAGIARISM OR HIRING OF GHOST WRITER(S) FOR SOLVING 

THE ASSIGNMENT(S) WILL DEBAR THE STUDENT FROM AWARD 
OF DEGREE/CERTIFICATE, IF FOUND AT ANY STAGE. 

2. SUBMITTING ASSIGNMENT(S) BORROWED OR STOLEN FROM 
OTHER(S) AS ONE’S OWN WILL BE PENALIZED AS DEFINED IN 
“AIOU PLAGIARISM POLICY”. 

 

 
 

Course: Compiler Construction (3468) Semester: Autumn, 2012 

Level: BS (CS) Total Marks: 100 
 

ASSIGNMENT No. 1 
 

Note:  All questions carry equal marks. 
 

Q. 1 (a) Define Compiler, using a diagram describes the three phases of analysis of 

source program. 

 (b) Explain all the phases of Compiler. 

 (c) Consider the following grammar. 

  S ―> XaYb 

X ―> bXc | b 

Y ―> dYa | d 

  Find the first sets for each non-terminal of the given grammar. 

 

Q. 2 (a) Explain the error detection and reporting mechanisms.  

 (b) Write the intermediate representation code of the following position: = initial 

+ rate * 60   

 

Q. 3 (a) Convert the following NFA into equivalent DFA using subset construction 

Algorithm.                 

                 
  Note: Show all necessary steps that are involved in subset construction 

algorithm. 



 2 

   (b)  Convert the Following regular expression into NFA using Thompson’s 
construction.  

  a ((b|b*c)d)* |d*a 
    
Q. 4 (a) Given the following grammar. 
  G → E 
  E → T + E | T 
  T → F * T | F 
  F → a 

i) Is this grammar ambiguous? Explain! 
ii) Draw all parse trees for sentence “a+a*a+a”. 

 (b)  Consider the following grammar. 
 S→ A 

  A→ A+A | B++ 
  B → y 
  Draw parse tree for the input “y+++y++” 
 

Q. 5 (a) Explain the role of the Lexical Analyzer and Parser in detail.  
 (b) Differentiate between Top-down parsing and Bottom-up parsing. 
 

ASSIGNMENT No. 2 
Total Marks: 100 

 

Note:  All questions carry equal marks. 

 

Q. 1 (a) Rewrite the following SDT: 
  A A {a} B | A B {b} | 0 
  B -> B {c} A | B A {d} | 1 
  so that the underlying grammar becomes non-left-recursive. Here, a, 6, c, and 

d are actions, and 0 and 1 are terminals. 
 (b) This grammar generates binary numbers with a "decimal" point: 
  S-* L . L | L 
  L-+LB\B 
  B -> 0 | 1 
  Design an L-attributed SDD to compute S.val, the decimal-number value of 

an input string. For example, the translation of string 101.101 should be the 
decimal number 5.625.  

 

Q. 2 (a) Translate the following expressions using the goto-avoiding translation 
scheme. 

  i) if (a==b kk c==d |I e==f) x == 1; 
  ii) if (a==b II c==d || e==f) x == 1; 
  iii) if (a==b && c==d kk e==f) x == 1;  
 (b) Construct the DAG and identify the value numbers for the sub expressions of 

the following expressions, assuming + associates from the left. 
  i)  a + b+ (a + b). 
  ii)  a + b + a + b. 
  iii)  a + a + ((fl + a + a + (a + a + a + a )).  



 3 

Q. 3 (a) Explain the following 

  i) Back Patching  

  ii) Procedure Calls   

 (b) Generate code for the following three-address statements, assuming all 

variables are stored in memory locations. 

i) x = 1 

ii) x = a 

iii) x = a + 1 

iv) x = a + b 

v) The two statements 

    x = b * c 

    y = a + x      
 

Q. 4 (a) The programming language C does not have a Boolean type. Show how a C 

compiler might translate if-statement into three-address code. 

 (b) Construct the DAG for the basic block 

  d = b * c 

  e = a + b 

  b = b * c  

  a = e - d 
 

Q. 5 (a) Generate code for the following three-address statements assuming a and b 

are arrays whose elements are 4-byte values. 

  i) The four-statement sequence 

   x = a [ i] 

   y = b [ j] 

   a [ i ] = y 

   b [ j ] = x 

  ii)  The three-statement sequence 

   x = a [ i] 

   y = b [ i] 

   z = x * y 

iii) The three-statement sequence 

   x = a [ i] 

   y = b[x] 

   a [ i ] = y 

 (b) Suppose a basic block is formed from the C assignment statements 

  x = a + b + c + d + e + f; 

  y = a + c + e; 

  i)  Give the three-address statements (only one addition per statement) for 

this block. 

  ii)  Use the associative and commutative laws to modify the block to use 

the fewest possible number of 

 
 



 4 

3468 Compiler Construction Credit Hours: 3(3, 0) 
 

Recommended Book:  

Compliers; Principles, Techniques, and Tools by Alfred V. Aho, Ravi Sethi, Jerrey D. Ullman  
 

Course Outlines: 
Unit No. 1 Introduction to Compiling 
 Compliers, analysis of the source program, the phases of a complier, cousins of 

the compiler, the grouping of phases, complier-construction tools 
Unit No. 2 A Simple One-pass Compiler 
 Overview, syntax definition, syntax-directed translation, parsing, a translator for 

simple expressions, lexical analysis, incorporating a symbol table, abstract stack 
machines, putting the techniques together  

Unit No. 3 Lexical and Syntax Analysis 
 Lexical analysis (the role of the lexical analyzer, input buffering, specification of 

tokens, recognition of tokens, a language for specifying lexical analyzers, finite 
automata, from a regular expression to an NFA, design of a lexical analyzer 
generator, optimization of DFA-based pattern matchers), syntax analysis (the role 
of the parser, context-free grammars, writing a grammar, top-down parsing, 
bottom-up parsing, operator-precedence parsing, LR parsers, using ambiguous 
grammars, parser generators)  

 Unit No. 4 Syntax-Directed Translation 
 Syntax-directed definitions, construction of syntax trees, bottom-up evaluation of 

s-attributed definitions, l-attributed definitions, top-down translation, bottom-up 
evaluation of inherited attributes, recursive evaluators, space for attribute values 
at compile time, assigning space at complier-construction time, analysis of 
syntax-directed definitions 

 Unit No. 5 Type Checking 
 Type systems, Specification of a simple type checker, Equivalence of type 

expressions, Type conversions, Overloading of functions and operators, 
Polymorphic functions, an algorithm for unification  

Unit No. 6 Intermediate Code Generation  
Intermediate Languages, Declarations, Assignment statements, Boolean 
expressions, Case statements, Back Patching, Procedure calls   

Unit No. 7 Code Generations  
Issues in the design of a code generator, The target machine, Run-time storage 
management, Basic blocks and flow graphs, Next-use information, A simple 
code generator, Register allocation and assignment, The dag representation of 
basic blocks, Peephole optimization, Generating code from dags, Dynamic 
programming code-generation algorithm, Code-generator generators 

Unit No. 8 Code Optimization  
Introduction, The principal sources of optimization, Optimization of basic blocks, 
Loops in flow graphs, Introduction to global data-flow analysis, Iterative solution of 
data-flow equations, Code-improving transformations, Dealing with aliases, Data-flow 
analysis of structured flow graphs, Efficient data-flow algorithms, A tool for data-flow 
analysis, Estimation of types, Symbolic debugging of optimized code 

Unit No. 9 Writing a Complier  
  Planning a compiler, Approaches to compiler development, The compiler-development 

environment, Testing and maintenance, A Look at Some Compilers, EQN, a 
preprocessor for typesetting mathematics, Compilers for Pascal, The C compilers, The 
Fortran H compilers, The Bliss/11 compiler, Modula-2 optimizing compiler 


